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Near-resonant forcing in a shallow two-layer fluid: 
a model for the internal surge in Loch New? 

By S. A. THORPE 
Institute of Oceanographic Studies, Wormley, Godalming, Surrey 

(R.eceived 13 July 1973) 

The form taken by a finite amplitude internal seiche in a shallow two-layer fluid 
within a long narrow container is akin to a shock wave in a gas-filled tube; 
an undular bore or surge is present which reflects back and forth along the length 
of the container. The internal surge in Loch Ness is sometimes observed to retain 
its amplitude over several seiche periods, and a resonance with the wind appears 
possible. This idea is explored by developing a theoretical model and by making 
a laboratory experiment, but difficulties are encountered in estimating the size 
of the parameters which characterize the natural phenomenon. 

1. Introduction 
The set of equations which describes a given physical phenomenon can seldom 

be solved analytically, even when approximations are made or when the solution 
is required only over a restricted range of the parameters which characterize 
the phenomenon. The usual approach to such problems is to find, if possible, 
numerical solutions using a computer. An alternative method, which is sometimes 
possible, is to model the phenomenon on a laboratory scale. Both methods of ap- 
proach suffer the disadvantage of producing solutions only for a finite set of 
values of the parameters. The latter method is often severely limited by the 
impossibility of properly reproducing simultaneously all the parameters which 
are important. It has, however, the advantage of sometimes revealing physical 
processes which have been overlooked in the mathematical formulation, or may, 
once the important parameters have been discovered, give some useful extension 
of the solution beyond the range for which solutions are possible by other means. 
This is an account of an attempt to model the internal surge in Loch Ness by a 
laboratory experiment, and describes how we were eventually foiled in completely 
achieving our objective by the problem of properly assessing the important 
features of the forcing mechanism. 

The oscillations of the thermocline of Loch Ness (figure 1)  were probably the 
first large-scale naturally occurring internal waves to be observed and investi- 
gated in detail. Watson (1904) was the first to interpret the observed oscillations 
as an internal seiche, and later detailed observations by Wedderburn (1907) 
showed that Watson’s analysis was basically correct.? The loch is about 35 km 

t Watson and Wedderburn’s explanation of the oscillations evoked such scepticism 
at the time that Wedderburn was persuaded to prove the existence of internal seiches else- 
where, and this he did in the Madusee in Northern Germany (Wedderburn 1911). 
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FIGURE 1. Loch Ness. The depth contours are at 200, 400 and 600 ft. 

in length and 1.4 km wide, and has a mean depth of about 140 m. It is remark- 
ably straight, lying in the Great Glen along the line of a fault, and is roughly ori- 
ented in the direction of the dominant winds. I n  early October there is a thermo- 
cline a t  a depth of about 40m. It is 10-20m thick, separating the warmer, 
about 12 “C, surface water from the colder, 6 “C, bottom water of the loch. The 
period of the fundamental internal seiche is about 521.1, corresponding to the 
first internal wave mode, with a wavelength twice the length of the loch. One 
puzzling observation of Wedderburn’s was that, half-way along the loch near 
Inverfarigaig, waves were observed which had a period of about half that of the 
fundamental seiche. Wedderburn’s observations were made with reversing 
thermometers (except for the occasional use of a platinum resistance thermo- 
meter, which produced evidence of thermal microstructure and pre-dated the 
discovery of thermocline fine structure by almost half a century), but Mortimer 
(1955) brought into use a thermistor chain and was able to obtain almost con- 
tinuous records of the loch temperatures a t  nine fixed depths. He showed 
that the effect of the earth’s rotation on the seiche is to produce a transverse 
tilt of the thermocline, and confirmed Watson’s conclusion that the seiche 
could be generated by the wind. The seiche could easily be detected as long as a 
week after its generation. Watson and Mortimer’s interpretation of the genera- 
tion process is that the stress produced by strong winds blowing along the 
loch causes a transport of warmer surface water towards one end of the 
loch, where the thermocline is depressed, and when the wind falls the tendency 
of the thermocline to recover a level position initiates the seiche. Mortimer 
recognized that a complex circulation developed in the surface layers during 
wind forcing. (Heaps & Ramsbottom (1966) have made a theoretical study of 
this circulation.) 

A surprising and persistent feature in &lortimer’s observations was the sudden 
temperature increases which were observed a t  fixed levels a t  the south-west 
end of the loch during part of the seiche cycle (figure 2 ) .  These are not consistent 
with Watson’s explanation of the seiche (based on linear theory), nor do they 
appear in theoretical and laboratory models of short internal standing waves 
(Thorpe 1968a). A well-known feature of long waves, however, is their tendency 
to steepen, and Mortimer’s observations have been interpreted as being due to an 
internal surge or bore, which is the form taken by internal waves of given ampli- 
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FIGURE 2. Temperature variation at  fixed depths a t  A ,  see figure 1, near Fort Augustus, 
taken from Mortimer (1955). The solid black curves show the wind speed measured at 
Fort Augustus Abbey tower, plotted on a square-law scale. 

tude and sufficiently great length?. Our observations (Thorpe 1971; Thorpe, 
Hall & Crofts 1972) have substantiated this conclusion. The seiche is a nonlinear 
phenomenon, akin to a tidal bore or shock wave, with a front which travels 
back and forth along the length of the loch. I ts  presence explains the half- 
period oscillation observed by Wedderburn. The rise in temperature observed 
at fixed depths as the surge passes is the result of an abrupt lowering of the ther- 
mocline, often by 10 m or more, and the long-wave theory of Long (1972) provides 
an explanation of this wave form. Cavanie (1971) has examined the development 
of an initial discontinuity in thermocline level, and his results show how the 
surge may develop from an initial wind-tilted thermocline as in Mortimer’s model. 

Often, after a strong wind, a surge will develop and travel a few times along 
the loch, becoming smaller as it does so. There are times however when the ampli- 
tude of the surge does not diminish, and it appears possible that the surge is then 
in resonance with the wind. Figure 3 shows the temperature measured every 
Ismin a t  a depth of 49.5m a t  a position B, see figure 1, some 2km from the 
centre of the loch from 10 to 20 October 1971 (when recording ended). An asym- 
metric oscillation with a period of about 26 h can be seen. The surge front is 
marked by arrows labelled NE and SW which indicate the directions of the ad- 
vance of the surge. The oscillation is more fully resolved in figure 4, which shows 
the records of temperature a t  six levels a t  a position about one-quarter of the way 
down the loch from the north-east end (C, figure 1). The north-eastward-going 
surge passing the recorders soon after 06.00 h on 17  October is undular in form 

t Similar internal bores have been observed in the Straits of Gibraltar by Ziegenbein 
(1969), in Massachusetts Bay by Halpern (1971),  in the Straits of Georgia by Gargett & 
Hughes (1972) and in Seneca Lake by Hunkins & Fliegel (1973). The cause of the latter is 
unknown. 



512 S. A .  Thorpe 

17- I 

October 1971 

FIGURE 3. The temperature measured every 15 min at 49.5 m depth a t  B, see figure 1. 
The direction of advance of the surge (known from simultaneous measurements at  C) is to 
the north-east (NE) or south-west (SW). 
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FIGURE 4. The temperature measured by thermistors a t  position C, see figure 1, and 
recorded every 2 min. The depths of the thermistors are 23, 43, 48, 53, 58 and 78 m. 

with waves of period about 40min. The reflected surge some 14 h later is more 
dispersed and does not appear to have an undular form. The waves are probably 
dissipated by reflexion a t  the rather irregular and gently sloping north-east 
end of the loch. The first three or four waves following a north-eastward-going 
surge are usually quite regular (more so than in figure 4), but they then become 
less coherent with higher frequencies appearing. This series of surges began after 
south-west windst of about 12 m s-l which lasted from the early morning of the 
10th until the afternoon of the 11th. The following three days were calm but on 
the 15thandthe 16thsouth-westwindsofup to 8 ms-lwererecorded. Theevening 
of the 10th was calm, but on the 17th and 18th the south-west wind again 
strengthened to speeds of 11 m s-l in mid-loch. The wind fell on the evening of the 
18th but rose once more during the daylight hours of the 19th, again from the 
south-west. The measurements of wind which are available for the period show 
that a regular forcing at the period of the surge is absent. There is, however, a 
significant south-west component with a period near the surge period, with an 
amplitude of about 4 m s-l, superimposed on a mean speed of about the same 
magnitude, and a partial resonance appears possible. 

C, figure 1. 
t Winds were measured using cup anemometers from a cabin cruiser between B and 
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In  the following section we shall describe a model for periodic wind forcing 
of the loch, a model which closely corresponds to a laboratory experiment ( $ 4). 
A two-layer model is considered, and an analogy is found between this and a 
single-layer fluid with a free surface, for which some solutions and experimental 
results are already available. We shall investigate the form taken by the surge 
and its dependence on the relevant parameters, and in particular we shall deter- 
mine how close the forcing frequency must be to the natural frequency of oscilla- 
tion for a surge to be generated. How well we are able to model the actual motions 
in the loch is discussed in $3 .  

2. Theory of resonant forcing 
2.1. The model 

VC’e shall consider in this section a rectangular tank with vertical walls and ends 
which contains two layers of incompressible fluid, the upper of depth h, and 
density pl, the lower of depth h, and density p2 ( > pl). For simplicity we assume 
that the upper fluid is bounded above by a rigid horizontal plane, so that the only 
mode of oscillation possible is interfacial, in which the boundary between the two 
layers is set into motion. The fluids are subjected to a horizontal body force 
P(z, t )  per unit mass (the axis x is vertically upwards), acting along the length I 
of the tank in the direction of the x axis. The motion is assumed to lie in the x, z 
plane. The bottom of the tank is at z = 0, the top a t  x = h, + h2 = D and the ends 
are at  x = 0, 1. This model corresponds closely to the laboratory experiments 
which will be described in $4. 

The method of analysis follows closely that described by Chester (1968) in his 
study of long surface waves in a container which is subjected to small horizontal 
oscillations at  a frequency near that of the free waves. The analysis here is 
abbreviated with reference to Chester’s work where possible. Chester’s results 
were compared with experiments made by Chester & Bones (1968) with favour- 
able agreement, in that the predicted wave forms were similar to those observed. 
This lends credence to the validity of the long-wave approximation which we 
shall employ. 

2.2. Governing equutions 

Let the subscript i following variables refer to the upper (i = 1) or lower (i = 2) 
fluid layer. The depths are hi and thevelocities are (ui, 0, wi). From the continuity 
equation and the boundary conditions 

w , = O  a t  x = D ,  w , = O  at  z = O ,  
we find that 

where 

a (hlE1) = 0, ah, a -+- (h2U2) = 0, --- 
at ax at ax 

Hence we find that 
a(h,u,+h~,u,)/ax = 0, 

33 

( 2 )  
F L M  63 
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and the total horizontal flux is a function of t.ime only, and is zero if the ends of 
the tank do not move horizontally. 

Integration of the horizontal component of t,he equations of motion leads t,o 
the pair of equations 

(see Chester 1968), where pi is the pressure, Si represents terms due to viscous 
dissipationin the boundarylayers at  thewalls, and which are discussed below, and 

Now since the pressure is continuous a t  the interface, 

aPl(h2)Px = @ 2 ( h 2 ) P X >  

and eliminating the terms containing the pressure gradient,, we obt,ain from (3) 
and (4) 

Equations (7) and (1) with the condition h, + h2 = D are used to specify the flow. 
Equation (7) is still exact and we now consider approximations, which may be 
justified a posteriori, appropriate to long interfacial waves. We suppose that the 
term 

is small in comparison with a(h,%,)/at and that it can be approxima,ted by the 
expression a(h,%if)/f?x. Similarly 

ax "so" u;az 

is approximated by a(h2ui)/ax. The term x1 is approximated by 

These approximations are valid provided that both ;lil and G2 are small in com- 
parison with the speed of the propagating surge and that the deviations from the 
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mean flow in any cross-section are small, other than in the viscous boundary 
layers at  the walls of the tank. The viscous terms in x1 will be important only in 
the side- and end-wall boundary layers and, being proportional to the vertical 
velocity, are much less than the viscous terms in S,  and S, considered below. 
The solution which we shall find will be an approximation subject to these con- 
ditions, and these will impose a severe restriction upon the scale of waves which 
may be found to  follow the surge front. 

We shall suppose for simplicity that F ( z ) t )  is uniform in each layer and is 
periodic with frequency a) so that 

A,cosat, 

A,cosat, 

h, < z < D, 
0 < x < h,, 

F(2 , t )  = 

where A,  and A ,  are constants. (Chester had no such body force in his problem 
and the motion was induced by a horizontal motion of the end walls of the tank.) 
Equation ( 7 )  may now be reduced to the form 

(8) 

The terms on the left side of this equation represent those which would be retained 
in a linear inviscid analysis. The three square brackets on the right represent 
the effects of finite amplitude, dispersion and dissipation respectively. 

2.3. The linear inviscid solution 

We consider first the solution obtained by neglecting the terms on the right-hand 
side of (8) and by adopting conventional series expansions 

Ei = u$’) + UP’ + . . . , hi = hio) + hi1) + hb2) + . , . , (9) 

where hiQ) and hLo) are the mean depths of the upper and lower layers respectively, 
so that hio) + @) = D. Retaining the leading terms of these series in the equations 
we find from (I) ,  (2) and (8) 

These may be combined to give t>he pair of equations 

au aa aa au 
%+a - = pcosat, at +a - = 0 

O ax Oax ’ 
33-2 
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where 

Here uo is the speed of long free progressive waves of small amplitude at the 
interface. A solution which satisfies the boundary condition uil) = uil) = 0 at  
rc = Ois 

wherefis an arbitrary function. (We have scaledfso that hi1) = 2hi0)f(t) at x = 0.) 
If this function f is chosen so that the boundary conditions a t  x = 1 are also satis- 
fied then we find 

cos [6(Z - 2x)/2ao] 
o cos ( a1/2u0) 

which is singular when the fluid is forced near resonance by a body force of 
frequency o close to a natural frequency (2m- l)nl/ao (nz is an integer) of the 
tank. We avoid this singularity by introducing higher order terms. The function 
f is  not yet specified in ( 14) and ( 15). Near resonancefwill dominate in the expres- 
sions for u and u, and we shall therefore proceed to solve the second-order equa- 
tions with u and a (and therefore up) and hi1)) represented by the terms in f alone 
and seek a solution which is valid near resonance and which, at  this higher order, 
satisfies the boundary conditions at both x = 0 and x = 1. We must first return 
to (8) and cast the dispersion and dissipation terms into convenient forms. 

Following Chester we write the dispersive term occurring in (8) in the form 

The effects of viscous dissipation are, we shall suppose, limited to the regions 
at the walls of the tank a,nd at the interface between the fluids. The dissipative 
term is 

where b is the width of the tank, vi is the kinematic viscosity and the y-integra- 
tion is over the width. To a good approximation 

where 7i1) is the stress on the walls in the x direction per unit area, 7iZ) is the stress 
per unit area on the horizontal boundary to the fluid and 7L3) is the stress per unit 
area at  the interface. 
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We write the shear stress in the form 

and the expression for the dissipative terms takes the form 

2.4. Second-order solut ion 

We may now substitute the dispersive and dissipative terms into (8). We combine 
this equation with the equations of continuity (1) and ( 2 ) ,  all expanded to second 
order, by making the transformation 

(where y1 and y 2  are constants; the details are given in the appendix) to obtain 
the pair of equations 

(slat & aoa/i?x) (U  + hi2)) = (sum of terms containing products 

off(t +x/a,), f(t - z/a,) and their derivatives; see equation (A 8)). 

These equations are now integrated and added to give an expression for U ,  and so, 
using (2), for ui2’ and uC). These satisfy the boundary condition ui2) = uC’ = 0 
a t  x = 0,  and we now impose the boundary condition ylTi1+ y2E2 = 0 at. x = 1 to 
find the function f. Correct to second order 

using (14) and (A7). At x = 1 the expression is simplified by observing that, for a 
forcing frequency which is close to a natural frequency of the tank, 

approximately. We impose now the condition that f shall be periodic (we are 
looking €or a periodic solution) with period 2n(2m i- l)/g, and (21) can be used t o  
show that 
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approximately. Using this equation to simplify the expression for U a t  x = I, 
we find, retaining only the most significant terms, 

at x = I, where we have dropped the superscript ( 0 )  from h, and h,. This equation 
has the same form as was found by Chester. So that a direct comparison with his 
nuinerical results may be made we shall forfeit some of the symmetry which might 
be exploited. With the substitution at = 27, f ( t )  = efF(7),  equation (22 )  may be 
integrated to give 

41. 4r2 
c + t cos 27 = (sgn [p, h: -p lh3}F2  - --F +- 

77 7T 

where c is a constant, 

and 

and we have chosen the x direction so that p l A ,  -p2 A ,  2 0. 
Equation ( 2 3 )  is identical to Chester's equation (5.22) if sgn [p2 h2, -pl hi] = + 1.  

(If the sign is negative we can recover Chester's equation by taking - F and hy 
adjusting the time scale by a half-period, TI...) If (p2-p1) / (p1  +p2)  < 1, as is the 
case in the loch, the symmetry of the solution shows that results for h, less than 
$0 may be used to infer those for h, greater than 40; that  is, in a Boussinesq 
approximation the profile shapes for h, > h, are the same, but inverted, as those 
for an upper layer depth equal to h, and a lower layer depth equal to h,. 

The solutions of (23 )  have been examined by Chester, and by Chester & Bones 
(1 968), who present solutions which agree well with their laboratory experiments 
at the same parameter values. At x = 0, one end of the tank, the depth of the 
lower layer is approximately h, - 2hi0)c$P(7). If frequency dispersion and dissipa- 
tion are both negligible, the last two terms in ( 2 3 )  vanish, and solutions close to 
resonance exhibit discontinuities, and sudden changes in level are found (see 
Chester & Bones 1968, figure 4). If plh;  > pzh2,, it is found in experiments that 
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these changes correspond to a fall in level of the interface (Thorpe 1971) consis- 
tent with a loss (rather than a gain) in energy at  the surge front. They closely 
resemble the abrupt changes in thermocline level found in Loch Ness (figure 2). 
The solutions for moderate dispersion and dissipation have the character of an 
undular bore. The parameter r is a measure of the width of forcing frequency band 
for which these solutions will be found. If > 1 the response is periodic, with 
little trace of a surge present. Chester’s solutions apply to measurements at one 
end of the tank, but observations in laboratory experiments show that the solu- 
tions retain the form they exhibit at the end of the tank even near the centre, 
although some slight development of the undular wave pattern often accompanies 
the propagation. 

3. The application of the results to Loch Ness 
We must first consider how well the model can be applied to the loch, and 

what values should be chosen for the parameters. The basin which contains the 
loch (figure 1) is fairly straight and regular in cross-section, although the north- 
east end is somewhat broader and less regular in shape than the south-west end, 
and the bottom at the north-east end shelves rather gently, with slopes of about 
1 : 20 in comparison with 1 : 6 at the south-west end. Some energy is lost from the 
surge at the north-east end (see figure 3) and the model would be improved by 
allowing a reduction of the energy of the surge a t  the ends of the tank. The sides 
of the basin are remarkably steep, except where rivers enter the loch a t  Glen 
Moriston and Glen Urquhart. There is a sill about half-way along the loch caused 
by the sediment deposited by a small river which enters at  Foyers, and here the 
bottom rises from depths of about 210 m to about 150m, but still well below the 
thermocline. The thickness of the thermocline is very small in comparison with 
the length or width of the basin and with the length of the waves which are 
observed to follow the surge, but may be as much as half the thickness of the layer 
above the thermocline. Neither this layer nor the region below the thermocline 
is isothermal, but contains small temperature gradients. Nevertheless a two- 
layer model should reproduce the main features of the thermocline movement. 

The boundary layers at the bottom and sides of the loch will usually be turbu- 
lent. We suppose that the effect may be represented by an eddy viscosity v 
with the same value in each layer. We can estimate the mean total rate of dis- 
sipation of energy a t  the boundaries of the loch using the method described by 
Thorpe (1968a, appendix 2) and hence find the e-folding time t, for a sinusoidal 
seiche to decay. (We do not account here for the surge, as the values for v will 
in any case be only approximate.) We know from the observations of Mortimer 
(1955) and Thorpe (1971) that t, is approximately three wave periods, and 
accounting for dissipation at  both the thermocline (as a sharp interface) and a t  
the bottom and sides of the loch, we find a value for an eddy viscosity, u = 11.6 
cmzs--1. This we might compare with a value of 26 cm2s-l found to be suitable 
in modelling Lake Windermere by Heaps & Ramsbottom (1966). 

The presence of the free surface of the loch, rather than the rigid lid as- 
sumed in the model, allows surface seiches, but these ha,ve periods which are far 
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removed from the period of the internal surge, and will not interfere.t The effect 
of having a free top will not significantly modify the shape of the internal waves 
(Thorpe 1968a). Quite ignored in the model is the effect of the rotation of the 
earth. The consequences of rotation are to modify the natural period of oscillation 
of the basin (a minor effect for long basins, see Rao 1966), to induce a transverse 
tilt of the isotherms (Mortimer 1955) and to modify the way in which the wind 
stress is imparted to water motions by the development of Ekman layers. 
It is the latter effect which is most difficult to assess. The body force used in the 
model has no direct counterpart in the loch, although it may represent the effect 
of the stress on the surface imparted to the region above the thermocline. Some of 
the stress is however used to  generate surface oscillations and circulatory currents 
in the upper layer, and so only some (unknown) fraction might be considered to 
be transmitted as an effective body force. In formulating the results we shall 
take A ,  = 0 and plAl = q7/h1, where q is a non-dimensional constant less than 
unity and 7 is the wind stress on the surface of the loch, itself assumed to be uni- 
form and not to vary with position (a sweeping assumption !). 

The approximations made in the model itself will be valid provided that the 
surge is sufficiently weak, and if E ,  6, sgr and E ~ S  are small. The current speeds 
below the thermocline are usually small and much less than the speed of the 
surge itself, about 37 em s-l. The motions observed above the thermocline are 
however often comparable with this speed, but their vertically averaged values 
are probably small, and only a small change (usually less than 8cms-l) is 
observed as the surge passes. (It is the ratio of this change to the speed of the surge 
which must be small if approximations made in reducing (7) to (8) are to be valid.) 

The model can thus, a t  best, be only a crude approximation to the loch. With 
these reservations we estimate the parameters which appear in (23), to see how 
well the solutions of Chester & Bones and our laboratory experiments (see $4) 
correspond to the loch, and to examine the range of forcing frequencies for 
which a surge may develop through resonance, We take 1 = 35 km, h, = 40 m, 
h, = loom, b = 1.4km and g(p,-p,) = 0.44g-2cm-2, which give a, = 35.5cm 
s-l and the natural period 2Z/a0 = 54.8 h. We take a surface stress 7 = 0.16 dyne 
ern-,, which is representat'ive of winds near 4 m s-l and hence p1 A ,  = 4q x 
dyne 

Usinn these values we find 

(We have taken forcing frequencies cl close to the natural frequency X = ma& 
in calculating E ,  el, 6 and s; provided that Irl < 2 variations in v do not produce 
very large changes from these values. The parameter s is calculated neglecting the 
action of viscosity on the upper boundary.) The ' constant' q is unknown. 

In  figure 5 are shown the experimental recordings of surface elevation at  x = 0 
for E = 0.014,6 = 0.065, s = 0.37 and a t  various values of r measured by Chester 

*I Unless a resonant interaction of the kind described by Smith & Mahony (1972) is 
possible. The periods of the first three surface seiches are 31.5, 15.3 and 8.8 min (Chrystal 
1910). 
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FIGITTE 5. Experimental recordings of the surface elevation of the free water surface at 
one end of a tank, taken from Chester & Bones (1968). The mean depth of water was 0.5 in., 
and B = 0-014, S = 0.065 and s = 0.37. The elevation is shown at various values of the 
parameter T.  

& Bones (their figure 5 ;  the values of the parameters were kindly communicated 
to me by Professor Chester). The figure shows very well the abrupt changes in 
elevation as the surge arrives, and the diminishing response as Irl increases, when 
the forcing is less well tuned to the natural frequency of the container. The dis- 
placement of the interfaceis equal to 2hetF(r), where his the water depth, 1.27 em 
in this experiment. F(7)  may thus be found from the curves, and on the right we 
have drawn in the scale for F. If dispersion and dissipation are both neglected F 
changes by 2 as the surge arrives at the end of the ta.nk when r = 0, but in this 
experiment the change in F is approximately 1-65 near resonance. The correspond - 
ing change in the two-layer model is 2h,d (1-65), or a fraction 0.63qg of the upper 
layer depth in Loch Ness when we introduce the value of el from (24). In  practice 
changes of 10-20 m are commonly observed in the loch, which give values of q 
in the range 0.1-0-4. Corresponding ranges of 0.008-0.032 for e and 0.39-0.79 
for s are found from (24), close to the values of the parameters in figure 5. Only 6, 
a measure of the dispersion, is poorly represented by the laboratory experiment, 
and the changes in isotherm levels in the loch may be expected to be more 
abrupt than those indicated by figure 5, since the loch value is less than that 
for the laboratory. A marked surge is found in the laboratory when Irl < 0.5. 
For q = 0-25 in the centre of its range, Irl is less than 0.5 provided that 
0-949 < cr/Z < 1-057. Wind forcing at periods between about 51-8 and 57.7 h 
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would thus generate a surge. The observed mean period of the surge shown in 
figure 3 is 56.2 h. 

In  view of the present uncertainty in ca.lculating the values of the parameters 
in the loch, it does not seem worth discussing further the other predictions 
which might be made. 

4. Laboratory experiments in a two-layer system : conclusion 
The apparatus used for the experiments is one which has been used for a variety 

of other experiments with stratified fluids (Thorpe 1973). It was not constructed 
wit2h the present experiments in mind and our ability to model the surge was 
limited to the parameter range which could be achieved in the existing apparatus. 
It consists simply of a long rectangular tube with perspex sides and closed ends 
with a height of lO-Ocm, width 10.25 ern and length 487-5 cm, which can be 
rocked about a horizontal pivot, like a see-saw. A small vertical oscillation was 
applied to one end of the tube through a shaft leading from an eccentric cam on 
a circular disk, which was itself driven by a motor through a hydraulic gearbox. 
The amplitude of the oscillation about a horizontal position could be varied by 
adjusting the radial position of the cam on the disk, and the frequency could be 
changed through the gearbox. The tube was completely filled with two layers 
of fluid, either paraffin (kerosene) and water, which are immiscible, or brine and 
water. The interface between the latter fluids was typically 0.8 cm thick when 
the experiments were begun. 

The effect of rocking the tube through a small angle a is equivalent to applying 
a periodic body force ga per unit mass, and thus 

PI-41 - ~ 2 4  = 9 4 ~ 2  -PA 
(taken positive by definition). With this identification the experiment corresponds 
closely to the model described by the theory. When oscillation was begun a t  a 
frequency close to  the natural frequency Z; a surge front quickly developed, 
reaching a constant amplitude after about four periods. Figure 6 (plate 1) shows 
the appearance of the front of the surge at  the interface between brine and water 
as it approached the right-hand end of the tube. The parameters are given in the 
figure caption, and the experiment has been arranged so that they correspond 
approximately to the parameters expected in Loch Ness. The experiments re- 
produce the depression of the thermocline as the surge passes, and the undular 
form of the surge. The period of the waves in the loch is however relatively smaller, 
by about half, than of those in the laboratory. This is probably in part the result 
of poor modelling of the parameter 8; the thickness of the thermocline may also be 
important. 

The wave trains which followed the front of the surge were much longer in extent 
in the experiments with a diffuse interface between brine and water than in those 
with a sharp interface between immiscible fluids, presumably owing to enhanced 
viscous dissipation in the latter. Several effects not accounted for in the theory 
were observed when the forcing amplitude was sufficiently increased. Rippling, 
or billow formation, evidence of shear instability, was observed near the leading 
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wave crest (or trough for surges in which the interface was lowered). In  the experi- 
ments with brine and water non-stationary ' cusped waves ' of the kind described 
by Thorpe (1973) were observed in front of the surge. These are thought to be 
caused by shear instability in a transition region in which the velocity interface 
is thicker than the density interface. Near the ends of the tube the short waves 
following the surge produced a standing-wave pattern during the reflexion of the 
surge, with breaking occurring a t  the wave nodes in the manner described in 
earlier experiments (Thorpe 1968a). These short waves are fairly regular close to  
the front of the surge but become irregular after the first four or five waves, with 
higher harmonics establishing themselves. This is possibly due to a second- 
order resonance phenomenon of the kind described by Davis & Acrivos (1967). 
A side-band instability of the kind discussed by Benjamin & Peir (1967) for 
surface waves is unlikely to occur in the loch (see appendix B). A note about the 
sha,pe of the waves which follow the surge is included in appendix C. 

These observations suggest that some of the irregularities which follow the 
leading waves of the surge in Loch Ness are not due entirely to reflexions at  the 
sides of the loch or to other externally induced disturbances, but may result from 
interactions in the wave train itself. 

It is remarkable that large surges are most commonly observed in Loch Ness 
in early October. We a t  first thought that this might be due to the fact that at  this 
season the thermocline depth is such that the natural period of the Loch is close 
to 48 h, and that a parametric resonance with the wind, which often has a notable 
diurnal component due to sea breezes, might be possible. In  Seneca Lake, how- 
ever, which has a natural period of about 77 h, Hunkins & Fliegel have also 
noticed that the largest and most frequent surges are in October, although no 
positive correlation with winds is available. A factor which may be important 
is the thickness of the thermocline, but an investigationis beyond the scope of this 
paper. The greatest uncertainty in the present model of the forced motion of the 
loch is that of properly accounting for the wind stress, and the effect which it has 
on the loch. Recent experiments have been made to observe the development of 
drift currents in the loch when the wind increases, and to investigate the effect 
which the wind has on the stratification, and it is hoped that a more satisfactory 
model may eventually be formulated. 

I am grateful to the members of the staff of the I.O.S. who have made the 
observations in Loch Ness possible, and particularly to Mr Alan Hall for con- 
structing and operating the instruments and for his assistance both in analysing 
the data and in making the laboratory experiment's. 
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Appendix A 
When the dispersive and dissipative effects are substantial, and terms of 

higher order than the first are omitted in the expressions for dispersion and dis- 
sipation, equation (8) becomes, correct to second order, 

whilst 1)  becomes 

where y1 and yz are consta.nt.s, and obtain expressions for ui2) and uiz) in terms of 
U from (A 3) and (A 4). When these are substituted into (A 1) and (A 2 )  we find 

and 

where 

and x is equal to the t'erms appearing on the right-hand side of (A I) .  Adding and 
subtracting (As)  and (AB), and substituting the expressions for hi1), hi1), uil) and 
uil) from (13)-( 15) but only including the dominant terms near resonance, we 
find 

h p  y2 - h p  y1 = h p  hi0)/ao, (A 7) 
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kVher*f+ 3 f(t + ./ao), f- 3 f(t  - x/a,), fi = df(y)/dy evaluated at  7 = t + x/ao, etc. 
The equations have the following part-icu1a.r solutions : 

where 

Appendix B. ' Side-band' interactions in a two-layer fluid 

wavenumber k and amplitude A such that 
It has been shown by Whitham (1967) that progressive waves of frequency IT, 

(r = v o ( k )  + k2A2v2(k) +terms of higher powers of A 

are unstable, finding resonances and interacting wit.h waves which have fre- 
quencies close to r ~ ,  if 

No such resonances are possible if x > 0. For example, the dispersion relation for 
surface waves in deep water is 

x = (Pa0/8k2)  b2 < 0.  

neglecting higher order terms, and x = -g/Sk < 0, and the waves are found 
experimentally to be unstable (Benjamin & Feir 1967), transferring their energy 
to side bands. 

The dispersion relation for progressive internal waves in a two-layer fluid is 
given by 

CJ-8 = gk(p2 -A)  t I t 2 / ( P l t 2  +P2tl ) ,  
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(Thorpe 1968a), where t ,  = tanh kh,, t ,  = tanh kh,, and pl, p2,  h, and h, are de- 
fined as before. It is easy to show that for waves with khl = 0.25 and kh, = 0-63, 
typical of the waves which follow t,he front of t.he surge in Loch Ness, 

a2Cr0lak2 > 0, Cr, > 0, 

and so the waves are stable to side-band disturbances. The waves following the 
surge shown in figure 6 (plate 1) are also such that x > 0 and are therefore stable. 
However waves typical of the ocean thermocline, when h, is very large and t ,  = 1, 
p2 -pl  6 p,, are such that 

and so are unstable to side-band instabilities. 
This is, however, an interaction in which energy is transferred at third order, 

and it is more probable that resonant interactions at second order (Davis & 
Acrivos 1967) will occur in practice. 

a2g0lak2 0, C, > o 

Appendix C. A note on the shape of waves in a two-layer shear flow 
It has been shown (Thorpe 1968b) how short waves in a two-layer fluid with 

no Eulerian mean flow in either layer and with a small density difference between 
the layers have crests which are narrower than their troughs if the lower layer is 
shallow and the upper is deep. Their shape is similar to that of surface waves. 
The troughs are narrower than the crests if the upper layer is the shallower. The 
object of this note is to point out that this result may not be true if the mean flow 
is non-zero. 

Consider for example a density front which advances with a wave train behind 
it into still water at speed c. The wave train is stationary with respect to the front. 
We take a frame of reference in which the waves, and the lower fluid, are a t  rest, 
with the upper layer, which for example we suppose is of infinite depth, moving 
past with a mean speed c. If q5 is Dhe velocity potential in the upper layer and is 
the interface displacement, then the motion is described by the Laplace equation, 

with the boundary conditions 
v2q5 = 0,  

aq5/ax+c, aq5laz+o as Z+CQ. 

These equations are exactly those of waves on the free surface of a deep fluid 
in a gravitational field 

directed upwards, as can be seen if the sign of z is reversed. Thus the shape of the 
interfacial waves is the same as those at  the free surface of a deep layer, but 
inverted, so that their troughs are narrower than their crests. 

This is just the opposite of the result found before, The waves which are ob- 
served to follow the surge in the laboratory experiment wit,h a shallow upper 
layer are sometimes shaped like surface waves. 

g' = d P 2  - P 1 ) h  
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